Bimetallic Sesquifulvalene Complexes—Compounds with Unusually Large Hyperpolarizability β^{**}

Ulrich Behrens, Hugo Brussaard, Ute Hagenau, Jürgen Heck,* Eric Hendrickx, Jan Körnich, Johannes G. M. van der Linden, André Persoons, Anthony L. Spek, Nora Veldman, Bea Voss, and Hans Wong

Dedicated to Prof. Dr. H. Schumann on the occasion of his 60th birthday

Abstract: In order to construct bimetallic organometallic donor-acceptor complexes with nonlinear optical (NLO) properties, the bimetallic sesquifulvalene complexes $[{CpFe(n^5-C_5H_4)}]Z\{n^7-C_7H_6)Cr (CO)_3$]BF₄ (2 BF₄) have been synthesized with different bridging functions Z (2a: $Z = -; 2b: Z = C_2; 2c: Z = (E)-C_2H_2).$ X-ray structure determinations show that $2aBF_4$ and $2cBF_4$ crystallize in acentric space groups $(P4_1, P2_12_12_1)$, whereas crystalline $2bBF_4$ has the centric space group $P2_1/c$. The organometallic fragments in 2a adopt a transoid conformation, those in 2b and 2c are cisoid. The $cyclo-C_5$ and $cyclo-C_7$ rings of the sesqui-

fulvalene ligands are almost coplanar; this allows an optimum electronic interaction between the ferrocenyl donor and the $[(\eta^7-C_7H_6)Cr(CO)_3]^+$ acceptor moiety in the crystalline state. Cyclovoltammetric studies show an electrochemically reversible one-electron oxidation (>0 mV vs. FeH/FcH⁺, FcH = ferrocene) and an irreversible one-electron reduction (≤ -900 mV), which are assigned to the

Keywords

bimetallic complexes • NLO materials • sandwich complexes • sesquifulvalenes • solvatochromism ferrocenyl and $[(\eta^7-C_7H_6)Cr(CO)_3]^+$ units, respectively. UV/vis spectra reveal low-energy absorptions for 2a - c at about $\lambda = 600$ nm, showing strong negative solvatochromism. These absorption maxima are related to a charge-transfer excitation between the ferrocenyl and the $[(\eta^7 C_7H_6$ Cr(CO)₃]⁺ groups, indicating considerable nonlinear optical properties. Determination of the first hyperpolarizability β by means of hyper Rayleigh scattering yields exceptionally large β values: $\beta(2b) = 570 \times 10^{-30}$ esu and $\beta(2c) =$ 320×10^{-30} esu. These unexpectedly large β values are explained by resonance enhancement.

Introduction

Currently, the most important class of nonlinear optical (NLO) compounds, which show large hyperpolarizabilities and are therefore able, for example, to double the frequency of a laser beam, has the following typical structure: an electron donor **D** is electronically coupled to an electron acceptor **A** by a π bridge.^[1-5] Compounds of this type undergo a change in pola-

rity caused by interaction with a strong electric field, which leads, in particular, to large values of the first hyperpolarizability β when the change in polarity is coupled with a charge transfer (CT) between the donor and acceptor. Often, such CT states can be represented by a polar resonance structure.^[5] This also holds for sesquifulvalene (1): although it can be described in terms of two resonance structures of different polarities (Scheme 1),

sesquifulvalene behaves like a polyene with alternating bond lengths,^[6] and its ground state is thus best described by the apolar resonance structure **1A**. On excitation, charge separation

Scheme 1. Resonance structures of sesquifulvalene.

occurs, and the resulting structure is likely to be related to the polar resonance form 1 B.

Calculations of the first hyperpolarizability $\beta^{[7, 8]}$ of 1 confirm a change in the dipole moment on excitation, but the high reactivity of 1^[9] prevents the experimental determination of its NLO properties. The objective of this work was to stabilize the aromatic units in 1B by complexation, for example, as ferrocene and (η^7 -cycloheptatrienylium)tricarbonylchromium units (2, Scheme 2), and to introduce various bridging functions Z into the bimetallic sesquifulvalene complexes,^[10] in order to modulate the interaction between the donor and acceptor. In addition

^[*] Prof. Dr. J. Heck, Prof. Dr. U. Behrens, Dr. H. C. Brussaard, Dipl.-Chem. U. Hagenau, Dipl.-Chem. J. Körnich, Drs. B. Voss, Dipl.-Chem. H. Wong Institut für Anorganische und Angewandte Chemie, Universität Hamburg Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany) Telefax: Int. code + (40)4123-6348 Prof. Dr. A. Persoons, Drs. E. Hendrickx Laboratorium voor Chemische en Biologische Dynamica Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium) Dr. A. L. Spek, Drs. N. Veldman Bijvoet Center for Biomolecular Research Laboratory of Crystal and Structural Chemistry Utrecht University, Padualaan 8, NL-3584 CH Utrecht (The Netherlands) Dr. Ir. J. G. M. van der Linden Vakgroep Anorganische Chemie, Universiteit Njimegen Toenooiveld, NL-6525 ED Nijmegen (The Netherlands) [**] Cooperative effect in π ligand bridged dinuclear complexes, Part 16. Part 15: U. Behrens, J. Heck, M. Maters, G. Frenzen, A. Roelofsen, H. T. Sommerdijk, J. Organomet. Chem. 1994, 475, 233.

Scheme 2. Bimetallic sesquifulvalene complexes.

to the stabilizing effect of the complexation, we hoped to induce an additional contribution to the first hyperpolarizability β , due to metal-ligand and ligand-metal charge transfer in the sandwich subunits of the complex.^[1]

Results and Discussion

Preparation: Complexes **4a** and **4b**, containing direct (Z = -) and acetylenic links ($Z = -C \equiv C$ -), respectively, between the subunits, were synthesized by nucleophilic addition of the monolithiated ferrocenyl derivates **3a** or **3b**^[11, 12] to the tropylium cation (Scheme 3). The vinylogous product **4c** was obtained by a Wittig reaction between formylferrocene (**5**)^[13] and 1,3,5-cycloheptatriene-3-ylmethylidene- λ^5 -phosphane (**6**).^[14, 15]

The ensuing $Cr(CO)_3$ addition proceeded stereoselectively at the *endo* position with respect to the ferrocenyl moiety.^[16] Hence, $7\mathbf{a}-\mathbf{c}$ possess a hydrogen atom at the *exo* position of the coordinated C_7 ring, which is essential for successful hydride abstraction to form the desired products $2\mathbf{a}-\mathbf{c}$. Although a 2:1 mixture of (Z)-7c to (E)-7c was used to prepare 2c, only the (E) isomer of $2\mathbf{c}$ was obtained, in more than 80% yield. Crystals of $2\mathbf{a}-\mathbf{c}$ are stable in air and black to dark green in color. The solutions of $2\mathbf{a}-\mathbf{c}$ in polar solvents are a deep greenish blue. X-ray structure analyses: The X-ray structure analyses of 2a-c reveal almost coplanar cyclo-C₅ and cyclo-C₇ units in the sesquifulvalene ligands (Fig. 1). The maximum deviation from the

Fig. 1. Molecular structures of 2a-c. For 2c the crystal structure depicted was obtained from a crystal grown in CH2Cl2 (see Experimental Section). The thermal ellipsoids are at the 50 % probability level. The hydrogen atoms, counter ions (BF_4^-) and solvent molecules are omitted for clarity. Selected bond lengths [Å] and angles [°] between the cyclo-C₅ plane and cyclo-C₇ plane of the sesquifulvalene ligand: 2a: Cr1-C1 2.241(7), Cr1-C2 2.214(7), Cr1-C3 2.224(9), Cr1-C4 2.228(7), Cr1-C 5 2.217(9), Cr1-C6 2.228(8), Cr1-C7 2.320(6), C7-C8 1.451(10), ≮(C1-7)(C8-12) 10.0(4); 2b: Cr1-C1 2.223(11), Cr1-C2 2.212(10), Cr1-C3 2.209(11), Cr1-C4 2.210(12), Cr1-C5 2.220(11), Cr1-C6 2.237(10), Cr1-C7 2.284(11), C7-C14 1.447(15), C8-C13 1.427(15), ★(C1-7)(C8-12) 8.3(5); 2c (obtained from CH₂Cl₂ solution): Cr1-C1 2.240(5), Cr1-C2 2.244(5), Cr1-C3 2.252(5), Cr1-C4 2.254(5), Cr1-C5 2.223(5), Cr1-C6 2.264(5), Cr1-C7 2.308(5), C7-C14 1.472(6), C8-C13 1.470(6), C13-C14 1.340(6), ≮(C1-7)(C8-12) 16.5(2); 2c (obtained from CHCl₃ solution, without drawing): Cr1-C1 2.254(8), Cr1-C2 2.227(8), Cr1-C3 2.244(8), Cr1-C4 2.243(9), Cr1-C5 2.215(8), Cr1-C6 2.250(8), Cr-C7 2.358(7), C7-C14 1.439(12), C8-C13 1.462(12), C13-C14 1.347(14), \neq (C1-7)(C8-12) 7.2(5).

coplanarity is 16.5(2)°, observed for 2c. Here, the cyclo-C₅ and cyclo-C₇ ligands are twisted out of the ethenediyl plane (C8-C13-C14-C7) by 11.5(4) and 5.2(4)°, respectively. Thus, in the solid state, electronic coupling is greatly facilitated between the donor and the acceptor, even for 2c. The elongated complexes 2b and 2c crystallize in the cisoid conformation, whilst the metal-ligand moieties of 2a are disposed trans to one another, possibly for steric reasons. Within experimental error, all the corresponding C-C and C-metal distances in the ferrocene and tricarbonylchromium complex fragments in 2a-c are identical and as expected. The bond lengths in the π bridge between the cyclo-C₅ and the cyclo-C₇ units do not show any anomaly that would suggest a substantial interaction between the two organometallic fragments in the ground state.^[17] However, it is worth mentioning that a significant increase in the Cr-C7 bond

FULL PAPER

length is observed relative to the remaining Cr-C distances in the *cyclo*- C_7 part of the bimetallic complex cations **2a-c** (Fig. 1).^[18]

Redox properties: Cyclovoltammetric investigations reveal that the shape and maxima of the redox waves of 2a-c (Fig. 2) are very similar to those of the mononuclear complexes, that is,

Fig. 2. Representative cyclic voltammogram of the bimetallic sesquifulvalene complexes (here: 2c, E vs. Ag/Agl).

ferrocene and $[(\eta^7-C_7H_7)Cr(CO)_3]^+$ (8) (Table 1): the first oxidation for $2\mathbf{a}-\mathbf{c}$ involves an electrochemically reversible oneelectron transfer, with the half-wave potential $E_{1/2}$ showing a slight anodic shift relative to that of ferrocene. In contrast, the first reduction step of $2\mathbf{a}-\mathbf{c}$ displays complete electrochemical irreversibility with a peak potential E_{pc} positioned close to that of 8. An analysis of the reductive wave $(I_p = f(v^{1/2}))$ confirmed that a one-electron reduction had taken place.^[19, 20] It is thus evident that the character of the HOMO in $2\mathbf{a}-\mathbf{c}$ is defined by the ferrocenyl moiety, whereas the character of the LUMO is mainly determined by the (cycloheptatrienylium)tricarbonylchromium unit. These properties of the bimetallic complexes $2\mathbf{a}-\mathbf{c}$ are expected to favor a change in the polarity upon electronic excitation.

UV/vis spectra: The UV/vis spectra of 2a-c in solution (Fig. 3) confirm our prediction. Pronounced *negative* solvatochromism is observed,^[21] in particular for the low-energy absorption about 600 nm (Table 1). This implies a greater polarity for the ground state than for the excited state, or even an inversion of the polarity upon excitation, as depicted by the resonance struc-

Fig. 3. Representative UV/vis spectra demonstrating the solvatochromic effect in different polar solvents (here $2c: - CH_2Cl_2, \cdots$ acetone).

Table 1. UV/vis and cyclovoltammetric data of the sesquifulvalene complexes $2aBF_4-2cBF_4$ and $[(\eta^7-C_7H_7)Cr(CO)_3]BF_4$ (8) and the first hyperpolarizability β of 2b and 2c.

	λ_{max}/t CH ₂ Cl ₂	nm [a] acetone	$\Delta \tilde{v}/cm^{-1}$ [b]	$\frac{E_{1/2}/V [c]}{(\Delta E_p/mV)}$	$E_{\rm pc}/{\rm V}$ [c,d]	Δ <i>E</i> /V [e]	$\frac{\beta}{\times 10^{-30}}$ esu [f]
2 a	590 [g]	570 [g]	590	0.33	-1.09	1.42	n.o. [h]
2 b	600 [g]	560 [g]	1200	0.22	- 0.90	1.12	570
2 c	670 [i]	590 [i]	2000	0.11	- 0.96	1.07	320
8	420			X - 7	—1.06 [j]	

[a] Low energy absorption; for further details see Experimental Section. [b] $\tilde{v}_{max}(CH_2CI_2)-\tilde{v}_{max}(acetone)$. [c] CH_2CI_2 solutions, vs. FcH/FcH⁺ (FcH = ferrocene). [d] E_{pc} = peak potential of the reduction ($v = 100 \text{ mVs}^{-1}$). [e] $\Delta E = E_{1/2}-E_{pc}$. [f] CH_2CI_2 solution. [g] ca. 10^{-3} M. [h] Not observed. [i] ca. 10^{-4} M. [j] For more details, see ref. [19,20].

tures 2A and 2B (Scheme 4). The increase of the solvatochromic effect in the order 2a < 2b < 2c corresponds to an increase in the change in dipole moment on photochemical excitation. Solvatochromic absorptions at comparable wavelengths

Scheme 4. Resonance structures of the bimetallic sesquifulvalene complexes.

have not been observed for sesquifulvalene,^[9] ferrocene,^[22] or $[(\eta^7-C_7H_7)Cr(CO)_3]^+$ (8).^[23] An absorption close to 700 nm has been reported for the structurally characterized cation [(cy-cloheptatrienylium)ferrocene]⁺ (9).^[24] We therefore assign the absorption centered at 600 nm to a charge-transfer excitation between the cyclo-C₅ and the cyclo-C₇ complex units, which could be regarded as a transition from the resonance structure **2A** to **2B**. The complex subunits [(η^5 -cyclopentadienyl)-(η^6 -pentafulvene)iron]^{+ [25]} and (η^6 -heptafulvene)(tricarbonyl)chromium,^[26] which make up the resonance structure **2B**, are stable mononuclear complexes; this indicates that the resonance structure **2B** might indeed have a certain stability.

NLO measurements: The assumption that the change in dipole moment involves a transition between the two resonance forms 2A and 2B can be confirmed, at least for 2b and 2c, by investigating the first hyperpolarizability β in solution. Owing to the ionic nature of 2a-c, β cannot be determined by means of the traditional EFISH technique (electric field induced second harmonic generation),^[1, 5] where a strong static electric field is applied to the solution containing the hyperpolarizable compound. Hence, the measurements were carried out using the hyper Rayleigh scattering method,^[27a] where a Nd: YAG laser $(\lambda = 1064 \text{ nm})$ serves as a light source and the intensity of the frequency-doubled scattered light is measured as a function of the concentration of the NLO chromophore. For 2a the frequency-doubled light with a wavelength of 532 nm is still in the region of relative strong aborption, and it is therefore impossible to measure the intensity of scattered light. However, the β values of 2b and 2c by far exceed those measured to date for mono- and bimetallic ferrocene derivates^[1, 2, 28] and are among the highest values ever reported for bimetallic complexes (Table 1); yet larger first hyperpolarizabilities β have only been reported for mixed valence hexacoordinated dinuclear Ru complexes.^[29]

The unusually large first hyperpolarizability β of **2b** and **2c** is attributed to resonance enhancement, which can be explained by means of the two-level model.^[30] According to this model, the relationship between the hyperpolarizability β and the optical CT excitation is described by Equation (a), where $h\omega_{CT} = \text{energy}$ of the CT excitation, $\Delta \mu = \text{change}$

$$\beta(-2\omega;\omega,\omega) = \frac{3\,\Delta\mu\,M^2}{(h\omega_{\rm CT})^2} \frac{\omega_{\rm CT}^2}{[1-(2\omega)^2(\omega_{\rm CT}^2)^{-1}][(\omega_{\rm CT})^2-\omega^2]}$$
(a)
= $\beta_0 \frac{\omega_{\rm CT}^2}{[1-(2\omega)^2(\omega_{\rm CT}^2)^{-1}][(\omega_{\rm CT})^2-\omega^2]}$

of the dipole moment between the ground and excited state, M = electronic transition moment, $\omega =$ frequency of the stimulating laser beam, $\beta_{\circ} =$ static hyperpolarizability.

Resonance enhancement becomes important when the frequency of the CT excitation ω_{CT} is either close to the frequency ω of the stimulating laser beam or close to 2ω . The latter is the case for **2b** and **2c**. Applying Equation (a) the static hyperpolarizability gives $\beta_0(2\mathbf{b}) = 105 \times 10^{-30}$ esu and $\beta_0(2\mathbf{c}) = 113 \times 10^{-30}$ esu. These results indicate that the extraordinarily large β values for **2b** and **2c** in general and the order $\beta(2\mathbf{b}) > \beta(2\mathbf{c})$ in particular are due to resonance enhancement.

Conclusion

The concept of using bimetallic organometallic sandwich complexes as NLO chromophores seems to be a very powerful way of developing new materials with unexpectedly high first order hyperpolarizabilities. Our results are not in agreement with other theoretical calculations of the first hyperpolarizability β , which predict that sandwich compounds do not have a future as efficient NLO chromophores.^[2, 31] The present results will encourage us to look for other sesquifulvalene-type bimetallic complexes with enhanced electronic coupling between the donor and acceptor function and increased first hyperpolarizability β .

Experimental Section

All manipulations were carried out using standard Schlenk techniques in a dry atmosphere of oxygen-free dinitrogen. The solvents were carefully dried and distilled from the appropriate drying agents prior to use. NMR: Varian Gemini 200 BB; measured at 295 K relative to TMS. UV/vis: Perkin-Ellmar Model 554. MS: Finnigan MAT 311A. Elemental analyses: Elementaranalysator CHN-O-Rapid, Fa. Heracus.

Ethinylferrocene: Powdered sodium hydroxide (11 g, 275 mmol) was added to a cooled solution $(T < 20^{\circ}\text{C})$ of (2-formyl-1-chlorovinyl)ferrocene (19 g, 69 mmol) [32] in DMSO (100 mL) and H₂O (5 mL). After being stirred for 30 min, the reaction mixture was diluted with H₂O (500 mL) and extracted with pentane. The pentane extract was evaporated to dryness. Yield: 68-88%.

(2,4,6-Cycloheptatrien-1-yl)ferrocene (4 a): Solid $[C_{7}H_{7}]BF_{4}$ (4.40 g, 24.7 mmol) was slowly added to a cooled suspension (-20 °C) of ferrocenyllithium (LiFc) (4.31 g, 22.4 mmol) [11] in Et₂O (125 mL). After being stirred for 2 h, the reaction mixture was allowed to warm to room temperature, filtered through celite, and evaporated to dryness. Yield: quantitative relative to started LiFc. ¹H NMR (200 MHz, CD-Cl₃): $\delta = 6.73$ (2H, pt, C₇ ring), 6.23 (2H, dm, J = 4 Hz, C₇ ring), 5.48 (2H, dd, J = 5 Hz, 9 Hz, C₇ ring), 4.23 (2H, pt, C₃H₄), 4.18 (5H, s, Cp), 4.17 (2H, pt, C₅H₄), 2.40 (1H, t, J = 5.4, C₇ ring).

(2,4,6-Cycloheptatrien-1-yl)(ferrocenyl)ethine (4b): see ref. [32a].

(Z,E)-1-Ferrocenyl-2-(1,3,5-Cycloheptatrien-3-yl)ethene (4c): An equimolar amount of LinBu (1.6M in hexane) was added to a cooled suspension (-78 °C)

of (1,3,5-cyclo heptatrien-3-yl-methyl)triphenylphosphonium tetrafluoroborate (0.91 g, 2 mmol, 11) [14, 15] in THF (30 mL). After warming to room temperature, a solution of formylferrocene (0.43 g, 2.0 mmol, 5) in THF (4 mL) was added. The reaction mixture was stirred for an additional 24 h and evaporated to dryness. The residue was extracted with hexane. Yield: 0.45 g (75%) of a 2:1 mixture of (Z):(E) isomers. ¹H NMR (200 MHz, CDCl₃): $\delta = 6.50$ (3H, m, CH=CH + C, ring), 6.43 (1H, d, J = 9.8, C₇ ring), 6.22 (1H, dd, J = 9.5, 6.0 Hz, C₇ ring); 4.40 (2H, m, C₅H₄), 4.25 (2H, m, C₅H₄), 4.13 (5H, s, Cp), 2.34 (2H, t, J = 6.7 Hz, C₇ ring); EI-MS (70 eV): m/z (%) = 302 (100, M^+), 237 (43, M^+ -Cp), 180 (18), 121 (36), 115 (11), 91 (5). Anal (%) caled for C₁₉H₁₈Fe: C 75.52, H 6.00; found C 75.26, H 5.93.

 $[\{CpFe(\eta^5-C_5H_4)\}Z\{(\eta^7-C_7H_6)Cr(CO)_3\}] (7a: Z = -; 7b: Z = C_2; 7c: Z = (Z,E)-C_2H_2): In a typical reaction, a mixture of the cycloheptatrienyl compound (5 mmol);$ **4a**,**4b**, or**4c** $) and Cr(CO)_3(EtCN)_3 (5 mmol), dissolved in THF (50 mL), was stirred for 20 h. After the solvent was removed in vacuo, the residue was then extracted with hexane, until the hexane extract remained colorless. Quantities used:$ **4a**, 4.0 g (14.8 mmol);**4b**, 3.16 (10.5 mmol);**4c**, 0.44 g (1.5 mmol).

7a: Yield 1.8 g (30%). ¹H NMR (200 MHz, CDCl₃): $\delta = 5.96$ (2H, m, C₇ ring), 4.86 (2H, m, C₇ ring), 4.25 (2H, s, C₃H₄), 4.17 (2H, s, C₅H₄), 4.10 (5H, s, Cp), 3.31 (2H, m, C₇ ring), 2.27 (1H, m, C₇ ring); IR (THF, KBr): $\tilde{v} = 1975$, 1907, 1885 cm⁻¹ (\tilde{v}_{co}). Anal (%) calcd for C₂₀H₁₆O₃CrFe: C 58.28, H 3,91; found C 58.09, H 4.09; **7b**: Yield 2.01 g (63%). ¹H NMR (200 MHz, CDCl₃): $\delta = 6.01$ (2H, m, C₇ ring), 4.81 (2H, m, C₇ ring), 4.43 (2H, s, C₅H₄), 4.23 (5H, s, Cp), 4.19 (2H, s, C₅H₄), 3.38 (2H, dd, C₇ ring), 2.62 (1H, t, J = 3.0 Hz, C₇ ring); IR (THF, KBr): $\tilde{v} = 1978$, 1915, 1889 cm⁻¹ (\tilde{v}_{co}). Anal (%) calcd for C₂₂H₁₆O₃CrFe: C 60.58, H 3.70; found C 59.94, H 4.35.

7c: Yield 0.45 g (75%) as a 2:1 (Z/E) mixture. ¹H NMR (200 MHz, CDCl₃): $\delta = 6.89$ (1H, d, J = 15.7 Hz, CH=CH), 6.65 (1H, d, J = 15.7 Hz, CH=CH), 6.04 (1H, dm, C_7 ring), 5.14 (1H, dm, C_7 ring), 4.88 (1H, dd, C_7 ring), 4.54 (1H, m, C_5H_4), 4.42 (1H, m, C_5H_4), 4.32 (2H, m, C_5H_4), 4.13 (5H, s, Cp), 3.50 (1H, dt, C_7 ring), 3.37 (1H, dt, C_7 ring), 2.95 (1H, dt, C_7 ring), 1.89 (1H, dt, C_7 ring); ¹³C NMR (50 MHz, CDCl₃): $\delta = 129.2$ (CH=CH), 127.0 (CH=CH), 112.9 (ipso-C, C_7 ring), 100.0 (C_7 ring), 97.9 (C_7 ring), 24.0 (C_7 ring); IR (THF, KBr): $\tilde{\nu} = 1965$, 1894, 1860 cm⁻¹ (v_{C0}); E1-MS (70 eV): m/z (%) = 438 (10, M^+), 354 (26, M^+-3CO), 302 (100, $M^+-Cr(CO)_3$), 237 (38), 180 (22), 121 (29), 115 (8), 91 (5), 65 (6). Anal (%) calcd for $C_{22}H_{18}O_3CrFe: C$ 60.30, H 4.14; found C 59.85, H 4.16.

 $\{ CpFe(\eta^{5}-C_{5}H_{4}) \} Z \{ (\eta^{7}-C_{7}H_{6})Cr(CO)_{3} \} \} BF_{4} \quad (2a: Z = -; 2b: Z = C_{2}; 2c: Z = (Z,E)-C_{2}H_{2}): A solution of [Ph_{3}C]BF_{4} \quad (2mmol) in CH_{2}Cl_{2} \quad (5mL) \text{ was added dropwise to a cooled } (-78^{\circ}) \text{ solution of } 7a, 7b, or 7c \quad (2mmol). The green reaction mixture was allowed to warm to room temperature and filtered. The product was precipitated from the filtrate by carefully adding Et_{2}O \quad (20mL). Quantities used: 7a, 0.39 g \quad (0.95 mmol); 7b, 0.85 g \quad (1.95 mmol): 7c, 0.5 g \quad (1.15 mmol).$

2a BF₄: yield, 0.45 g (95%). ¹H NMR (200 MHz, CD₂Cl₂): $\delta = 6.60$ (2H, m, C₇ ring), 6.33 (2H, dd, C₇ ring), 6.21 (2H, d, C₇ ring), 4.93 (2H, pt, C₃H₄), 4.86 (2H, pt, C₃H₄), 4.17 (5H, s, Cp ring); ¹³C NMR (50 MHz, CD₂Cl₂): $\delta = 104.2$, 103.1, 98.1 (C₇ ring), 75.4 (C₃H₄), 72.0 (Cp), 69.7 (C₅H₄); IR (CH₂Cl₂, KBr): $\bar{\nu} = 2056$, 2019 ($\bar{\nu}_{co}$), 1056 (ν_{B-F} in nujol) cm⁻¹; UV/vis (CH₂Cl₂): λ_{max} (ε) = 408 (2600), 443 (sh), 590 (3100) nm (10³ cm² mol⁻¹); (acetone): λ_{max} (ε) = 400 (1600), 425 (sh), 570 nm (10³ cm² mol⁻¹). Anal (%) calcd for C₂₀H₁₅O₃CrFeBF₄: C 48.24, H 3.03; found C 47.41, H 3.36.

2b BF₄: yield, 0.83 g (85%); ¹H NMR (200 MHz, CD₂Cl₂): $\delta = 6.68$ (2H, m, C₇ ring), 6.49 (2H, m, C₇ ring), 6.35 (2H, d, C₇ ring), 4.64 (2H, pt, C₃H₄), 4.46 (2H, pt, C₃H₄), 4.26 (5H, s, Cp), 3.70 (1,2-C₂H₄Cl₂), recrystallized from 1,2-C₃H₄Cl₂); ¹³C NMR (50 MHz, [D₆]acetone, $\delta = 29.9$, 206.3, 295 K): $\delta = 209.8$ (CO), 105.5 (C₇ ring), 105.4 (C₇ ring), 105.3 (C₇ ring), 73.3 (C₃H₄), 71.1 (Cp), 69.0 (C₃H₄); IR (CH₂Cl₂, KBr): $\tilde{\nu} = 2063$, 2026 ($\tilde{\nu}_{CO}$), 2215, 2198, 2170 (ν_{Cac}), 1056 (ν_{B-F} in nujol) cm⁻¹; FAB-MS: m/z (%) = 435 (89, M^+), 407 (38, M^+ -CO), 379 (7, M^+ -2CO), 367 (24), 351 (83, M^+ -3CO), 299 (100, M^+ -Cr(CO)₃); UV/vis (CH₂Cl₂): λ_{max} (ϵ) = 435 (3100), 600 (3100) nm (10³ cm² mol⁻¹); (acetone): λ_{max} (ϵ) = 432 (2800), 560 (2500) nm (10³ cm² mol⁻¹). Anal (%) calcd for C₂₂H₁₅O₃CrFeBF₄ + CH₂Cl₂: C45.52, H 2.83; found C 46.08, H 3.06 (the elemental analysis agrees with a formula that incorporates one CH₂Cl₂ molecule! This is also supported by the ratio of the intergrals in the ¹H NMR spectra).

2c BF₄: yield, 0.39 g (83% with respect to Ph₃CBF₄) as pure (*E*) product. ¹H NMR (200 MHz, CD₂Cl₂): $\delta = 7.67$ (1H, d, J = 15.7 Hz, CH=CH), 6.57 (1H, d, J = 15.7 Hz, CH=CH), 6.72 (2H, m, C, ring), 6.35–6.40 (4H, m, C, ring), 4.82 (2H, pt, C₃H₄), 4.73 (2H, pt, C₃H₄), 4.35 (5H, s, Cp); ¹³C NMR (50 MHz, CD₂Cl₂): 211.4 (CO), 145.81 (CH=CH), 119.9 (CH=CH), 104.80 (C, ring), 103.1 (C, ring), 98.6 (C, ring), 73.9 (C₃H₄), 70.3 (C₃H₄), 71.5 (Cp). IR (KBr): $\tilde{\nu} = 2042$, 2007 ($\tilde{\nu}_{co}$), 1615 ($\tilde{\nu}_{g-c}$), 1056 ($\tilde{\nu}_{g-F}$, in nujol) cm⁻¹; FAB-MS: *m/z* (%) = 437 (100, *M* +), 409 (44, *M*⁺-CO), 372 (16, *M*⁺-Cp), 353 (98, *M*⁺-3CO), 301 (82, *M*⁺-Cr(CO)₃); 236 (16), 232 (18); UV/vis (CH₂Cl₂): λ_{max} (ε) = 385 (11500), 470 (6600), 670 (4700) m (10³ cm² mol⁻¹); (acetone): λ_{max} (ε) = 359 (2500), 433 (7700), 594 (6000) nm (10³ cm² mol⁻¹). Anal (%) calcd for C₂₂H₁₇O₃CrFeBF₄: C 50.43, H 3.27: found C 49.98, H 3.26.

X-ray structure analysis (Table 2): Crystals suitable for X-ray structure analyses were obtained by slow diffusion of Et_2O from the gas phase into a CH_2Cl_2 solution

Table 2. Crystallographic data of the compounds 2a BF₄, 2b BF₄, 2c BF₄, and 2c BF₄(CHCl₃)

	2 a BF ₄	2 b BF4	2 c BF ₄	2c BF ₄ (CHCl ₃)
formula	C ₂₀ H ₁₅ CrFeO ₃ BF ₄	$C_{22}H_{15}CrFeO_{3}$ -	C ₂₂ H ₁₇ CrFeO ₃ BF ₄	C ₂₂ H ₁₅ CrFeO ₃ - BF. (CHCL)
М.	497.98	691.87	524.02	643.38
crystal system	tetragonal	monoclinic	triclinic	orthorhombic
space group	P4,	$P2_{1}/c$	$P\overline{1}$	P2,2,2,
a/Å	10.3713(6)	10.352(2)	8.056(2)	8.285(2)
b/Å	10.3713(6)	7.629(2)	16.264(6)	28.625(7)
c/Å	17.8335(12)	34.992(13)	16.259(8)	10.385(3)
$a/^{\circ}$	-	_	89.80(4)	
bl°	-	90.61(2)	89.15(3)	
y/°	_	_	86.01(2)	_
$V/Å^3$	1918.2(2)	2763.4(14)	2124.9(14)	2462,9(10)
z	4	4	4	4
crystal size/mm ³	$1.0 \times 0.2 \times 0.1$	$0.05 \times 0.38 \times 0.65$	$0.1 \times 0.2 \times 0.4$	$0.5 \times 0.5 \times 0.02$
T/K	150	150	173	173
$\rho_{\rm onlod}/\rm gcm^{-3}$	1.724	1.663	1.638	1.735
monochromator	graphite	graphite	graphite	graphite
abs. coeff./mm ⁻¹	1.38	1.36	1.25	11.9
F(000)	1000	1384	1056	1288
scan type	$\omega/2\theta$	ω	$\omega/2\theta$	$\omega/2\theta$
$\theta_{\min,\max}/^{\circ}$	2.0-27.5	1.2-25.0	1.2-25.0	2.5-76.0
scan width/°	$0.92 + 0.35 \tan\theta$	$1.00 + 0.35 \tan\theta$	$0.80 + 0.35 \tan\theta$	$1.00 + 0.35 \tan\theta$
index range	$-13 \le h \le 0$	$-13 \le h \le 13$	$0 \le h \le 9$	$-8 \le h \le 10$
	$-13 \le k \le 13$	$-9 \leq k \leq 0$	$-19 \leq k \leq 19$	$0 \le k \le 34$
	$-23 \le l \le 0$	$-45 \le l \le 45$	$-19 \le l \le 19$	$0 \le l \le 12$
total refins	4994	9724	8380	3938
unique reflns	2258	4818	7530	3938
obs. reflns $[I > 2\sigma(I)]$	1733	2668	5364	3398
parameters	271	342	596	331
<i>R</i> 1	0.0505	0.0996	0.0517	0.0914
wR2	0.1219	0.2639	0.1176	0.2395
w^{-1} [a]	$\sigma^2(F_{\rm o}^2) + (0.0673P)^2$	$\sigma^2(F_{\rm o}^2) + (0.1000P)^2$	$\sigma^2(F_o^2) + (0.0777P)^2$	$\sigma^2(F_o^2) + (0.2037P)^2$
Flack parameter	+ 0.007(41)	-	_	- 0.024(12)
S	0.992	1.212	1.063	1.025
min, max resd/eÅ ⁻³	-0.38, 0.75	-0.73, 1.20	-0.44, 0.64	-1.39, 0.91

[a] $P = [\max(\mathbf{F}_{e}^{2}, 0) + 2F_{e}^{2}]/3.$

of $2aBF_4-2cBF_4$. For $2cBF_4$ an additional crystallization was performed with CHCl₃ instead of CH₂Cl₂. The data were recorded on four-circle diffractometers $(2aBF_4, 2bBF_4)$: University of Utrecht, Enraf-Nonius CAD4, Mo_{Ka}, $\lambda = 0.71073$ Å, rotating anode; **2cBF**₄, **2cBF**₄ (CHCl₃): University of Hamburg, Hilger & Watts, $Mo_{K\alpha}$, $\lambda = 0.71073$ Å and Enraf-Nonius CAD4, $Cu_{K\alpha}$, $\lambda = 1.5418$ Å). The structures of $2aBF_4$ and $2bBF_4$ were solved by automated Patterson methods and subsequent difference Fourier techniques (DIRDIF-92) [33]. The structures of 2cBF4 and 2cBF4 (CHCl3) were solved by direct methods (SHELXS-86) [34]. Refinement on F^2 was carried out by full-matrix least-square techniques (SHELXL-93) [35]; no observance criterion was applied during refinements. For $2bBF_4$ the anion BF_4^- and dichloromethane residues appeared to be disordered but no satisfactory model could be refined. One of the two symmetry-independent cationic sesquifulvalene complexes of 2c BF₄ (crystallized from CH₂Cl₂) was disordered. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were refined with a fixed isotropic thermal parameter related by a factor of 1.2 to the value of the equivalent isotropic thermal parameter of their carrier atoms. Weights were optimized in the final refinement cycles. Further details of the structure determination (including atomic coordinates, bond lengths and angles, thermal parameters, and thermal motion ellipsoid plots) may be obtained from the Director of the Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ (UK), on quoting the full journal citation.

Cyclic voltammetry (CV): For experimental setup see ref. [36]. CV measurements were performed in CH₂Cl₂, 0.1 M (nBu_4N)PF₆ at room temperature: reference electrode Ag⁺/AgI: working electrode: Pt disk (d = 3 mm); auxiliary electrode: Pt plate (0.6 cm²).

Hyper Rayleigh scattering: For experimental setup see ref. [27 a]. All measurements were performed at a basic wavelength of $\lambda = 1064$ nm with a the Nd: YAG laser. For all measurements, CH₂Cl₂ solutions of **2a**-c were used; p-nitroaniline in CH₂Cl₂ was used as reference ($\beta = 21.6 \times 10^{-30}$ esu).

Acknowledgements: This work was partly supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO) (A. L. S. and N. V.) and by the Belgium National Foundation of Sciences (A. P. and E. H.). Additional funding came from the European Community (ERBSCI1 CT910740). We thank A. Roelofsen for carrying out CV measurements. Supplementary figures can be found in the World Wide Web (WWW) on the Web-Server from University of Hamburg with URL: http:// www.uni-hamburg.de under FB Chemie > Institut f. Anorg. Chemie > AK Heck.

Received: July 18, 1995 [F 223]

- [1] a) N. J. Long, Angew. Chem. 1995, 107, 37-56; Angew. Chem. Int. Ed. Engl. 1995, 34, 21-38; b) H. S. Nalwa, Appl. Organomet. Chem. 1991, 5, 349-377.
- [2] J. C. Calabrese, L.-T. Cheng, J. C. Green, S. R. Marder, W. Tam, J. Am. Chem. Soc. 1991, 113, 7227-7232.
- [3] T. J. Marks, M. A. Ratner, Angew. Chem. 1995, 107, 167-187; Angew. Chem. Int. Ed. Engl. 1995, 34, 155-174.
- [4] D. R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev. 1994, 94, 195-242, and references therein.
- [5] D. J. Williams, Angew. Chem. 1984, 96, 637–651; Angew. Chem. Int. Ed. Engl. 1984, 23, 690–703.
- [6] H. Prinzbach, Pure Appl. Chem. 1971, 28, 281-329.
- [7] J.O. Morley, J. Am. Chem. Soc. 1988, 110, 7660-7663.
- [8] G. R. J. Williams, J. Mol. Struct. (Theochem), 1987, 151, 215-222.
- [9] M. Neuenschwander, W. K. Schenk, Chimia, 1972, 26, 194-197.
- [10] The compound with Z = -, ML_n = FeCp, and M'L_n = Mo(CO)₃ is the only bimetallic sesquifulvalene complex published to date, in a short communication: M. Cais, A. Eisenstadt, J. Am. Chem. Soc. 1967, 89, 5468-5469.
- [11] D. Guillaneux, H. B. Kagan, J. Org. Chem., 1995, 60, 2502-2505.
- [12] The synthesis of ethinylferrocene was modified from ref. [32a].
- [13] J. M. Osgerby, P. L. Pauson, J. Chem. Soc. 1958, 650–660.
- [14] G. A. Doorakian, L. G. Duquette, J. F. Arnett (Dow Chemical Co.), U. S. 4266079, **1981** [Chem. Abstr. **1981**, 95, 62182 [].
- [15] G. Cavicchio, M. D'Antionio, G. Gaudiano, V. Marchetti, P. P. Ponti, Gazz. Chim. Ital. 1979, 109, 315-321; G. Cavicchio, G. Gaudiano, P. P. Ponti, Tetrahedron Lett., 1980, 21, 2333-2336.
- [16] The endo addition of the Cr(CO)₃ fragment has been shown for 7a and (Z)-7c by means of X-ray structure analysis (H. C. Brussaard, U. Hagenau, J. Heck, A. L. Spek, N. Veldman, H. Wong, unpublished).

- [18] A comparable elongation of the distance between the central metal and *ipso*-C atom is found in methoxy-η⁷-cycloheptatrienylium)tricarbonylchromium (see U. Behrens, J. Kopf, K. Lal, W. E. Watts, J. Organomet. Chem. 1984, 276, 193-198).
- [19] CV studies of [(η⁷-C₇H₇)Cr(CO)₃]⁺ have already been published: A. N. Romanin, A. Ceccon, A. Venzo, J. Elektroanal. Chem. 1981, 130, 245-254.
- [20] Unlike A. Ceccon and co-workers [19], we assume that the reduction of $[(\eta^7 C_7H_7)Cr(CO)_3]^+$ involves a one-electron transfer. The evaluation of our own measurements in CH₂Cl₂ shows that the peak current of the reduction is only 80-90% as large as the peak current of the electrochemically reversible one-electron oxidation at 0 V. The theoretical value of the peak current for an irreversible one-electron transfer is 78.5% with respect to the i_p of a corresponding electrochemically reversible one-electron transfer, assuming a transmission coefficient α_e of 0.5.
- [21] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed., VCH, Weinheim, 1988.
- [22] Y. S. Sohn, D. N. Hendrickson, H. B. Gray, J. Am. Chem. Soc. 1971, 91, 3603-3612.
- [23] UV/vis measurements of $[(\eta^7-C_7H_7)Cr(CO)_3]BF_4$ in CH_2Cl_2 in our laboratory do not show any absorption for $\lambda > 500$ nm.
- [24] S. K. Brownstein, E. J. Gabe, R. C. Hynes, Can. J. Chem. 1992, 70, 1011-1014.
 [25] U. Behrens, J. Organomet. Chem. 1979, 182, 89-98.
- [26] J. A. S. Howell, B. F. G. Johnson, J. Lewis, J. Chem. Soc. Dalton Trans. 1974, 293-298.

- [27] a) K. Clays, A. Persoons, *Rev. Sci. Instrum.* **1992**, 63, 3285–3289; b) Because of the negative solvatochromism, it is assumed that the β values obtained in this study are negative as well (see ref. [17]). Hence, the β values in Table 1 are
- absolute values, since the sign of the first hyperpolarizability β cannot be detrmined by hyper Rayleigh scattering.
 [28] R. Loucif-Saibi, J. A. Delaire, L. Bonazzola, G. Doisneau, G. Balavoine, T. Fillebeen-Khan, I. Ledoux, G. Puccetti, Chem. Phys. 1992, 167, 369-375;
- P. D. Harvey, L. Gan, *Inorg. Chem.* 1991, 30, 3239-3241.
 [29] W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, A. Persoons, *Na*-1092, 262, 58.
- ture, 1993, 363, 58-60.
 [30] E. Hendrickx, K. Clays, A. Persoons, C. Dehu, J. L. Bredas, J. Am. Chem. Soc. 1995, 117, 3547-3555.
- [31] D. R. Kanis, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1990, 112, 8203-8204; ibid. 1992, 114, 10338-10357.
- [32] a) T. S. Abram, W. E. Watts, Synth. React. Inorg. Met. Org. Chem. 1976, 6, 31-53; see also: b) J. Polin, H. Schottenberger, Org. Synth. in press.
- [33] P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits, C. Smykalla, The DIRDIF program system, Technical report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [34] G. M. Sheldrick, SHELXS-86 Program for crystal structure determination. University of Göttingen, Germany, 1986.
- [35] G. M. Sheldrick, SHELXL-93 Program for crystal structure refinement. University of Göttingen, Germany, 1993.
- [36] P. M. J. A. Hermans, A. B. Scholten, E. K. van den Beuken, H. C. Brussaard, A. Roelofsen, B. Metz, E. J. Reijerse, P. T. Beurskens, W. P. Bosman, J. M. M. Smits, J. Heck, *Chem. Ber.* 1993, 126, 553-563.